Incremental Span Stepwedges

An incremental span stepwedge is a stepwedge that spans its complete interval, and that has the same integer increment between all pairs of neighboring steps. There are only certain combinations that satisfy these constraints. All possible cases are summarized in the table below.

A common example would be a stepwedge representing 8-bit pixel values. In this case, an 8-bit value can represent 256 unique levels, spanning the range [0, 255]. What integer increments exist that will exactly span this range? An obvious value would be an increment of one. This would make a 256 level stepwedge (0, 1, 2, … 253, 254, 255). This is an incremental span stepwedge because it has the same integer increment between all pairs of steps (1) and it spans the full 8-bit range (0 through 255). Another obvious value would be an increment of 255 which would make a two-level stepwedge (0, 255). Both of these stepwedges span the entire range (i.e. they contain both extreme values 0 and 255) and both have integer increments (i.e. 1 and 255 in these examples).

Other possibilities exist that are less obvious. An increment of 2 will not work, because that produces a stepwedge that does not span the full range (0, 2, 4, … 252, 254). Notice that this stepwedge does not contain the value 255; therefore it is disqualified. An increment of 3 will work, since it produces a spanning stepwedge (0, 3, 6, 9, … 249, 252, 255). If you exhaustively examine all possible increments, you will find that the 8-bit case has only eight incremental span stepwedges:

8-bit stepwedges

Here is a table that presents all possible incremental span stepwedges for bit sizes from 1 through 16.

Number of Bits Number of Steps Increment Step Values
1 2 1 0, 1
2 4
2
1
3
0, 1, 2, 3
0, 3
3 8
2
1
7
0, 1, 2, 3, 4, 5, 6, 7
0, 7
4 16
6
4
2
1
3
5
15
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
0, 3, 6, 9, 12, 15
0, 5, 10, 15
0, 15
5 32
2
1
31
0, 1, 2, 3, 4, 5, … 26, 27, 28, 29, 30, 31
0, 31
6 64
22
10
8
4
2
1
3
7
9
21
63
0, 1, 2, 3, 4, 5, … 58, 59, 60, 61, 62, 63
0, 3, 6, 9, 12, 15, … 48, 51, 54, 57, 60, 63
0, 7, 14, 21, 28, 35, 42, 49, 56, 63
0, 9, 18, 27, 36, 45, 54, 63
0, 21, 42, 63
0, 63
7 128
2
1
127
0, 1, 2, 3, 4, 5, … 122, 123, 124, 125, 126, 127
0, 127
8 256
86
52
18
16
6
4
2
1
3
5
15
17
51
85
255
0, 1, 2, 3, 4, 5, … 250, 251, 252, 253, 254, 255
0, 3, 6, 9, 12, 15, … 240, 243, 246, 249, 252, 255
0, 5, 10, 15, 20, 25, … 230, 235, 240, 245, 250, 255
0, 15, 30, 45, 60, 75, … 180, 195, 210, 225, 240, 255
0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255
0, 51, 102, 153, 204, 255
0, 85, 170, 255
0, 255
9 512
74
8
2
1
7
73
511
0, 1, 2, 3, 4, 5, … 506, 507, 508, 509, 510, 511
0, 7, 14, 21, 28, 35, … 476, 483, 490, 497, 504, 511
0, 73, 146, 219, 292, 365, 438, 511
0, 511
10 1024
342
94
34
32
12
4
2
1
3
11
31
33
93
341
1023
0, 1, 2, 3, 4, 5, … 1018, 1019, 1020, 1021, 1022, 1023
0, 3, 6, 9, 12, 15, … 1008, 1011, 1014, 1017, 1020, 1023
0, 11, 22, 33, 44, 55, … 968, 979, 990, 1001, 1012, 1023
0, 31, 62, 93, 124, 155, … 868, 899, 930, 961, 992, 1023
0, 33, 66, 99, 132, 165, … 858, 891, 924, 957, 990, 1023
0, 93, 186, 279, 372, 465, 558, 651, 744, 837, 930, 1023
0, 341, 682, 1023
0, 1023
11 2048
90
24
2
1
23
89
2047
0, 1, 2, 3, 4, 5, … 2042, 2043, 2044, 2045, 2046, 2047
0, 23, 46, 69, 92, 115, … 1932, 1955, 1978, 2001, 2024, 2047
0, 89, 178, 267, 356, 445, … 1602, 1691, 1780, 1869, 1958, 2047
0, 2047
12 4096
1366
820
586
456
316
274
196
118
106
92
66
64
46
40
36
22
16
14
10
8
6
4
2
1
3
5
7
9
13
15
21
35
39
45
63
65
91
105
117
195
273
315
455
585
819
1365
4095
0, 1, 2, 3, 4, 5, … 4090, 4091, 4092, 4093, 4094, 4095
0, 3, 6, 9, 12, 15, … 4080, 4083, 4086, 4089, 4092, 4095
0, 5, 10, 15, 20, 25, … 4070, 4075, 4080, 4085, 4090, 4095
0, 7, 14, 21, 28, 35, … 4060, 4067, 4074, 4081, 4088, 4095
0, 9, 18, 27, 36, 45, … 4050, 4059, 4068, 4077, 4086, 4095
0, 13, 26, 39, 52, 65, … 4030, 4043, 4056, 4069, 4082, 4095
0, 15, 30, 45, 60, 75, … 4020, 4035, 4050, 4065, 4080, 4095
0, 21, 42, 63, 84, 105, … 3990, 4011, 4032, 4053, 4074, 4095
0, 35, 70, 105, 140, 175, … 3920, 3955, 3990, 4025, 4060, 4095
0, 39, 78, 117, 156, 195, … 3900, 3939, 3978, 4017, 4056, 4095
0, 45, 90, 135, 180, 225, … 3870, 3915, 3960, 4005, 4050, 4095
0, 63, 126, 189, 252, 315, … 3780, 3843, 3906, 3969, 4032, 4095
0, 65, 130, 195, 260, 325, … 3770, 3835, 3900, 3965, 4030, 4095
0, 91, 182, 273, 364, 455, … 3640, 3731, 3822, 3913, 4004, 4095
0, 105, 210, 315, 420, 525, … 3570, 3675, 3780, 3885, 3990, 4095
0, 117, 234, 351, 468, 585, … 3510, 3627, 3744, 3861, 3978, 4095
0, 195, 390, 585, 780, 975, … 3120, 3315, 3510, 3705, 3900, 4095
0, 273, 546, 819, 1092, 1365, 1638, 1911, 2184, 2457, 2730, 3003, 3276, 3549, 3822, 4095
0, 315, 630, 945, 1260, 1575, 1890, 2205, 2520, 2835, 3150, 3465, 3780, 4095
0, 455, 910, 1365, 1820, 2275, 2730, 3185, 3640, 4095
0, 585, 1170, 1755, 2340, 2925, 3510, 4095
0, 819, 1638, 2457, 3276, 4095
0, 1365, 2730, 4095
0, 4095
13 8192
2
1
8191
0, 1, 2, 3, 4, 5, … 8186, 8187, 8188, 8189, 8190, 8191
0, 8191
14 16384
5462
382
130
128
44
4
2
1
3
43
127
129
381
5461
16383
0, 1, 2, 3, 4, 5, … 16378, 16379, 16380, 16381, 16382, 16383
0, 3, 6, 9, 12, 15, … 16368, 16371, 16374, 16377, 16380, 16383
0, 43, 86, 129, 172, 215, … 16168, 16211, 16254, 16297, 16340, 16383
0, 127, 254, 381, 508, 635, … 15748, 15875, 16002, 16129, 16256, 16383
0, 129, 258, 387, 516, 645, … 15738, 15867, 15996, 16125, 16254, 16383
0, 381, 762, 1143, 1524, 1905, … 14478, 14859, 15240, 15621, 16002, 16383
0, 5461, 10922, 16383
0, 16383
15 32768
4682
1058
218
152
32
8
2
1
7
31
151
217
1057
4681
32767
0, 1, 2, 3, 4, 5, … 32762, 32763, 32764, 32765, 32766, 32767
0, 7, 14, 21, 28, 35, … 32732, 32739, 32746, 32753, 32760, 32767
0, 31, 62, 93, 124, 155, … 32612, 32643, 32674, 32705, 32736, 32767
0, 151, 302, 453, 604, 755, … 32012, 32163, 32314, 32465, 32616, 32767
0, 217, 434, 651, 868, 1085, … 31682, 31899, 32116, 32333, 32550, 32767
0, 1057, 2114, 3171, 4228, 5285, … 27482, 28539, 29596, 30653, 31710, 32767
0, 4681, 9362, 14043, 18724, 23405, 28086, 32767
0, 32767
16 65536
21846
13108
4370
3856
1286
772
258
256
86
52
18
16
6
4
2
1
3
5
15
17
51
85
255
257
771
1285
3855
4369
13107
21845
65535
0, 1, 2, 3, 4, 5, … 65530, 65531, 65532, 65533, 65534, 65535
0, 3, 6, 9, 12, 15, … 65520, 65523, 65526, 65529, 65532, 65535
0, 5, 10, 15, 20, 25, … 65510, 65515, 65520, 65525, 65530, 65535
0, 15, 30, 45, 60, 75, … 65460, 65475, 65490, 65505, 65520, 65535
0, 17, 34, 51, 68, 85, … 65450, 65467, 65484, 65501, 65518, 65535
0, 51, 102, 153, 204, 255, … 65280, 65331, 65382, 65433, 65484, 65535
0, 85, 170, 255, 340, 425, … 65110, 65195, 65280, 65365, 65450, 65535
0, 255, 510, 765, 1020, 1275, … 64260, 64515, 64770, 65025, 65280, 65535
0, 257, 514, 771, 1028, 1285, … 64250, 64507, 64764, 65021, 65278, 65535
0, 771, 1542, 2313, 3084, 3855, … 61680, 62451, 63222, 63993, 64764, 65535
0, 1285, 2570, 3855, 5140, 6425, … 59110, 60395, 61680, 62965, 64250, 65535
0, 3855, 7710, 11565, 15420, 19275, … 46260, 50115, 53970, 57825, 61680, 65535
0, 4369, 8738, 13107, 17476, 21845, 26214, 30583, 34952, 39321, 43690, 48059, 52428, 56797, 61166, 65535
0, 13107, 26214, 39321, 52428, 65535
0, 21845, 43690, 65535
0, 65535